STATE OF THE STATE

A HYDROGENE

Table of contents

Program Description	page 3
Semester 5 – 1 st Year	page 4
Semester 6 – 1 st Year	page 5
Semester 7 – 2 ND Year	page 6
Semester 8 – 2 ND Year	page 7
Semester 9 – 3 RD Year	page 10
Semester 10 – 3 RD Year	page 12

PROGRAM DESCRIPTION ENSEM

The challenges of the energy transition by 2050 lead to many technological breakthroughs in the fields of production, optimal distribution and rational use of energy and renewables (energy efficiency and consumption optimization, massive electrification, control and management of energy systems, cogeneration and energy recovery processes, new and renewable energies, etc.).

The first three semesters of training take place in a common core curriculum. Scientific curriculum combining mechanical engineering, electrical engineering and information sciences is supplemented by general training (modern languages, communication, managerial sciences, system engineering). An introduction to the professional world is guaranteed by internships in companies and multiple industrial interventions. From the second half of the second year, the training is organised in the form of skill blocks around energy networks, energy conversion, electrical machines, energetics, control monitoring and safety of energy systems, numerical modelling & simulation and mechanical engineering. A selection

of these blocks makes it possible to customize the training paths according to the students' professional projects: transport and mobility, industrial energetics, energy networks, etc.

International experience is encouraged through numerous opportunities for academic exchanges and internships abroad. All of this makes it possible to acquire solid scientific and technical knowledge recognized by industrialists, a precise understanding of the challenges in the field of energy and the soft skills that are essential to engineering professions.

Semester 5 courses

CM = Lecture TD = Tutorial TP = Lab work Barre UE = Pass Grade

Course ref	Course name	СМ	TD	ТР	Hours	Coeff.	ECTS	Barre UE	More info
5KSPLN02	ENSEM ENERGY DEGREE Semester 5								
5KUPLN08	EU Mathematical Tools 1								
5KEPLN81	Mathematics for engineering	14	16	0	30	3	_	10	
5KEPLN82	Numerical analysis 1	8	6	6	20	2	3	10	
5KUPLN02	EU Foundations of Mechanics								
5KEPLN21	Continuum Mechanics	20	10	0	30	2,5	F	10	
5KEPLN22	Thermodynamics	16	14	0	30	2,5	5	10	
5KUPLN09	EU Electricity 1								
5KEPLN91	Electrotechnics	14	10	6	30	2,5	_	5 10	
5KEPLN92	Tools for electricity and electronics	12	10	8	30	2,5	5		
				а	~				
5KUPLN10	EU Sciences de l'Information & Info 1								
5KEPLNOA	Signal and system modeling	9	4	10	23	2			
5KEPLNOB	DES modeling	4	3	0	7	0,5	5	10	
5KEPLNOC	Algorithms and programming	7	5	18	30	2,5			
L				<u>^</u>	^				
5KUPLN11	EU Languages 1								
5KEPLN1A	English	0	24	0	24	2,5			
5KEPLN1B	Foreign Language 2	0	24	0	24	2,5	5	10	
5KEPLN1C	Validation of French language level	0	1	0	1	Quitus	1		

5KUPLN12	EU General Education
5KEPLN2A	Management
5KEPLN2E	Electrical accreditation-work safety
5KEPLN2B	Communication
5KEPLN2C	Project management
5KEPLN2D	1st year project

14	0	0	14	1,5			
8	0	0	8	Quitus			
0	16	0	16	1,5	5	10	
4	16	0	20	2			
0	0	30	30	Quitus			

367

TOTAL

Semester 6 courses

CM = Lecture TD = Tutorial TP = Lab work Barre UE = Pass Grade

Course ref	Course name	СМ	тр	тр	Hours	Coeff.	ECTS	Barre	
								UE	
KSPLN02	ENSEM ENERGY DEGREE								
	Semester 0	_							
KUPLN09	EU Mathematical Tools 2								
5KUPLN91	Probabilities and statistics	18	16	0	30	2			
5KUPLN92	Optimization and graphs	16	14	0	20	1,5	5	10	
SKUPLN93	Numerical analysis 2	8	6	6	20	1,5			
6KUPLN02	EU Applied Mechanics		r	·	r	.	r	r	-
6KEPLN21	Mechanics for engineering	14	8	8	30	2,5	- 5	10	
5KEPLN22	2 Fluid Mechanics and Applications		10	8	30	2,5		_	
		-							
6KUPLN10	EU Electricity 2							r	
6KEPLNOA	Electrical machines	13	8	9	30	2,5	- 5	10	
5KEPLNOB	Power electronics	13	8	9	30	2,5			
		_							
6KUPLN11	EU Information Science 2	l							
6KEPLN1A	Automatic control - System control and	14	7	9	30	2,5	- 5		
 6KEPLN1B	Object-oriented Algorithms and program-							10	
	ming		5	18	30	2,5			
6KUPLN12	EU Languages 2	1							
6KEPLN2A	English	0	24	0	24	2,5			Γ
6KEPLN2B	Foreign Language 2	0	24	0	24	2,5	5	10	
5KEPLN2C	Validation of French language level	0	1	0	1	Quitus			
6KUPLN13	EU General Education 2	1							
6KEPLN3A	Business Management	12	6	0	18	2			Γ
6KEPLN3B	Innovation and entrepreneurship	0	12	0	12	Quitus	1		
	Electrical accreditation-work safety		0	0,5	0.5	Quitus	5	12	
OKEPLINJE		$1 \mid 2$	10	0	12	1	1		
6KEPLN3C	Communication								
6KEPLN3C 6KEPLN3D	1st year project	0	0	20	20	2			
6KEPLN3C 6KEPLN3D	1st year project	0	0	20	20	2			
6KEPLN3E 6KEPLN3C 6KEPLN3D 6KUPLN08	EU Industrial internship	0	0	20	20	2	1		

TOTAL 371,5

Semester 7 courses

CM = Lecture TD = Tutorial TP = Lab work Barre UE = Pass Grade

Course ref	Course name	СМ	TD	ТР	Hours	Coeff.	ECTS	Barre UE	
KS2AN05	ENSEM ENERGY DEGREE								
	Semester 7								
7KUNRJ01	EU Mathematical Tools 3								
7KENRJ10	Distributions	9	6	0	15	1,5	7	10	
7KENRJ11	NRJ11 PDE		6	0	15	1,5	3		
7KUNRJO2	EU Energy conversion								
7KENRJ20	Electromechanical conversion of energy	8	4	12	24	2			
7KENRJ21	ENRJ21 Energy conversion chain		0	20	26	2	5	10	
7KENRJ22	Materials for engineering	8	12	0	20	1			
7KUNRJO3	EU Mechanics								
7KENRJ31	Foundation in heat transfers	8	12	10	30	2,5	E	10	1
7KENRJ32	Rotating machines	18	8	4	30	2,5	3		
7KUNRJO4	EU Electrical engineering								
7KENRJ40	Power electronics	16	6	8	30	2,5	_	10	1
7KENRJ41	Electrical machines	10	8	12	30	2,5	5		
7KUNRJ05	EU Information Science 3								
7KENRJ50	Signal Processing	18	8	4	30	2,5	_		I
7KENRJ50	Sensor Networks	10	5	15	30	2,5	5	10	
									1
7KUNRJ0 <u>6</u>	EU General Education 3								
7KENRJ60	Conferences: scientific culture in energy	20	0	0	20	Quitus			1
7KENRJ61	Professional communication	8	2	0	10	1	1		
7KENRJ62	Account management	10	10	0	20	2	7	10	

TOTAL

7KENRJ63

7KENRJ64

English

2nd foreign language

Semester 8 courses

CM = Lecture TD = Tutorial TP = Lab work Barre UE = Pass Grade

Course ref	Course name	СМ	TD	тр	Hours	Coeff.	ECTS	Barre UE	More info
8KPNAN01	1 Semester 8								
Х	B01 : 4 electives to choose among 8				80		6	10	
х	B02 : 4 electives to choose among 8				80		6	10	
х	B03 : 4 electives to choose among 8				80		6	10	
x	B04 : 4 electives to choose among 8				80		6	10	
8KUNRJ10	EU General education 4								

OKUNKJIU	EO General education 4
8KENRJ1A	English
8KENRJ1B	2nd foreign language
8KENRJ1C	Marketing strategy and business simulation

0	24	0	24	2			
0	24	0	26	2	6	10	
6	24	0	30	2			

TOTAL

398

30

EU General Education 4

English

Dynamic presentations.

In this module the focus is on oral skills and communication techniques (technical impact, report building, signposting, effective use of slides). Students will have to present an innovative project for which they would need funding.

2nd foreign language

Development of transferable skills in daily and professional life.

Work on different exercises to prepare the language certifications in listening comprehension, reading comprehension, grammar and vocabulary and oral expression. Preparation for public speaking.

Business Strategy and Business Simulation

The business management simulation is a module for applying the notions learned in management, marketing, finance and goods production. Based on group work, this business game offers an effective way to concretely apprehend the interweaving of commercial, financial and human decisions and the company's relationship with its environment. It gives everyone the opportunity to test their ability to react to the vagaries of the economic situation, to the blows of the competition, based on imperfect information and in a limited time.omprehension, grammar and vocabulary and oral expression. Preparation for public speaking.

Semester 8 electives (choose 4)

Note that these combinaisons are not compatible in terms of schedule : B1/B8 , B2/B5, B3/B6

CM = Lecture	TD = Tutorial	TP = Lab work	Barre UE = Pass Grade								
Course ref		Elective na	me	СМ	TD	ТР	Hours	Coeff.	ECTS	Barre UE	More info
8KS2ANO6		Semester	8								

B1 8KUNRJ01	Networks, sources and storage elements
	Electrical networks modeling
	Renewable energy integration
	Static and dynamic characteristics of energy storage sources and elements
	Heat networks
	Case study

8	4	4	16	1,2		
10	2	4	16	1,2]	
18	0	0	18	1,2	6	
6	4	4	14	1,2		
0	4	12	16	1,2		

TOTAL

80

B2 8KUNRJ02	Electrical machine drive control and dynamic modeling			
	Electric motorization and generation systems: modeling and implementation			
	Electrical machines connected to the network: failures and transient regimes			

20	12	8	40	3	4	
16	8	16	40	3	0	

TOTAL 80

10	20	10	40	3	4	
14	10	16	40	3	o	

TOTAL 80

20	8	12	40	3		
16	0	24	40	3	o	

80

80

TOTAL

28	22	0	50	3,75	4	
0	0	30	30	2,25	0	

TOTAL

10	10	0	20	1,5		
10	10	0	20	1,5	4	
8	4	8	20	1,5	o	
10	4	6	20	1,5		

TOTAL

B3 8KUNRJO3	Thermal and fluid conversion in energy systems			
Thermodynamics of energy systems				
	Fluid energy conversion: modeling and dimensioning			
B4	Advanced power electronics for stationary			

8KUNRJO4	and embedded applications
	Current and emerging Power Structures
	Digital integration

B5 8KUNRJO5	Fluid and thermal couplings for energy systems
	Transfer intensification and multiphysics couplings
	Coupling case studies

B6 8KUNRJO6	Control, monitoring, dependability
	Digital control
	Stability and stabilization of systems
	Discrete Event Systems
	Dependability

CM = Lecture TD = Tutorial TP = Lab work Barre UE = Pass Grade

Course ref	Elective name	СМ	TD	ТР	Hours	Coeff.	ECTS	Barre UE	More info
8KS2ANO6	Semester 8								

B7 8KUNRJ07	Modeling and numerical simulation (choose 1 core module + 2 modules a&b) = 80H
	Module 1 : Numerical simulation methods (core module)
	Module 2a : Finite element modeling and simulation of magnetic devices
	Module 2b : Finite element method in low frequency electromagnetism
	Module 3a : Finite volumes and finite elements applied to Mechanics (Matlab/FlexPDE)
	Module 3b1 : Finite element analysis of machines & structures (Abaqus)
	Module 3b2 : Numerical tools for fluid and thermal mechanics (Fluent/Comsol)
	Module 4a : Dynamic models & Coupled multiphysics systems (co-modeling)
	Module 4b : From co-modeling to co-simulation
	Module 5a : Simulation applied to the control of conti- nuous systems
	Module 5b : Numerical simulation of DES

14	0	6	20	1,5		
6	0	24	30	2,25		
12	6	12	30	2,25		
6	0	24	30	2,25		
6	0	24	30	2,25	6	
6	0	24	30	2,25		
0	0	30	30	2,25		
0	0	30	30	2,25]
10	0	20	30	2,25		
12	6	12	30	2,25		

TOTAL 80

B8 8KUNRJ08	Ecodesign for energy and mobility
	Computer Aided Design (CAD)
	Eco-design: materials, costs and life cycle
	Innovative technologies and processes
	Case studies in dimensioning

4	0	16	20	1,5		
14	6	0	20	1,5		
10	2	8	20	1,5	o	
2	0	18	20	1,5] [

TOTAL

Semester 9 courses

CM = Lecture TD = Tutorial TP = Lab work Barre UE = Pass Grade

Course	Elective name		TD	ТР	Hours	Coeff.	ECTS	Barre UE	More info
XXXXXXXX	Energie Semester 9								
B1	B01 Elective (4 to choose among 18,)				60			10	
B2	B02 Elective (4 to choose among 18)				60		20	10	
B3	B03 Elective (4 to choose among 18)				60		20	10	
B4	B04 Elective (4 to choose among 18)				60			10	

9KUFGN06	EU General training 5								
9KXANG06	English	0	30	0	30	2,5			
	Profesional development seminar	10	20	0	30	2,5	5	10	
	Research in Energy	20	0	0	20	Quitus			
						~			

SKOFGN15 EU Projects								
9KEFGN51 final year project	0	0	60	60	3	_	12	
9KEFGN52 Cross-disciplinary design office	0	0	30	30	2	3		

EU General Education 5

English

This course consists of 2 modules with a professional focus: Interacting Professionally and Scientific communication. The objective is to provide students with skills in business and scientific English. Students who have not yet validated the B2 level will be able to follow a «B2 support» module designed to help them obtain a minimum score of 785 on the TOEIC test..

TOTAL

410

30

Professional developement seminar

During one week the students will be prepared for their search for an engineering internship. They will follow different workshops (definition of the professional project, digital identity, advice for writing CVs and cover letters, etc.) They will meet HR people from different companies, alumni and participate in job interview simulations.

EU projects

End of studies project

The objective of this end-of-study project is to allow students to implement the knowledge acquired during their training at Ensem and to apply it to a concrete engineering research and development problem.

The subject is proposed by a professor or a company and the students will work individually or in groups depending on the subject and the work required to meet the specifications of the study.

The students will thus develop their reasoning and adaptation faculties, in order to immerse themselves in a company during the engineering internship that will follow at the end of semester 9.

Cross-disciplinary design office

Group project that allows to put into practice in the form of a design office the skills and knowledge developed during the modules taught.

The students will be able to apply them on the experimental platforms (Urbanloop, Internet of Energies, Energetics etc..) They will also acquire transferable skills in project management, teamwork and independent research.

Course ref	Course name	Hours	More info
XXXXXXXX	Energie	240h	
	Semester 9 : 4 courses to choose among 18		
B9	Diagnostic, risk analysis, monitoring		
B10	Data Analysis, Machine Learning and Al		
B11	Mesurement, inverse problems and identification		
B12	Transmission, distribution and security in communication networks		
B13	Autonomous and embedded electrical networks		
B14	Electrical machines		

High-availability electromechanical conversion

Digital twin: Power Hardware in the Loop (P-HIL)

High speed flows, energy conversion by combustion

Experimental methods for transfer characterization

Interfacial transfers for efficient industrial processes

Electrical components in their environment

Electrical storage systems

Transfer intensifications

Energy network management

Mechanical quality and reliability

Material durability and service life

Mechanical structure optimization

B15

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

60h

Semester 10 courses

INP Ensem

TO INGÉNIEURS CRÉÉE EN 1900

INP Ensen

École Nationale Supérieure d'Électricité et de Mécanique 2 Avenue de la Forêt de Haye BP 90161 54505 Vandœuvre Cedex

+33 (0) 3 72 74 44 00

ensem-contact@univ-lorraine. fr ensem-energie-nancy
ensem.nancy
ensemnancy_officiel

